

Universidad Nacional Mayor de San Marcos
 School of Computer Science

 Syllabus of Course

 Syllabus of Course Academic Period 2018-II

1. Code and Name: EG0005. Math II (Mandatory)
2. Credits: 4
3. Hours of theory and Lab: 4 HT ; (15 weeks)
4. Professor(s)

Meetings after coordination with the professor

5. Bibliography

[Ste12] James Stewart. Calculus. 7th. CENGAGE Learning, 2012.
[Zil13] Dennis G. Zill. Differential equations with Boundary value problems. 8th. CENGAGE Learning, 2013.

6. Information about the course

(a) Brief description about the course The course develops in students the skills to deal with models of science and engineering skills. In the first part of the course a study of the functions of several variables, partial derivatives, multiple integrals and an introduction to vector fields is performed. Then the student will use the basic concepts of calculus to model and solve ordinary differential equations using techniques such as Laplace transforms and Fourier series.
(b) Prerrequisites: EG0003. Mathematics I. (1 ${ }^{\text {st }} \mathrm{Sem}$)
(c) Type of Course: Mandatory
(d) Modality: Face to face

7. Specific goals of the Course

- Apply derivation rules and partial differentation in functions of several variables.
- Apply techniques for calculating multiple integrals.
- Understand and use the concepts of vector calculus.
- Understand the importance of series.
- Identify and solve differential equations of the first order and their applications in chemical and physical problems.

8. Contribution to Outcomes

a) An ability to apply knowledge of mathematics, science. (Assessment)
j) Apply the mathematical basis, principles of algorithms and the theory of Computer Science in the modeling and design of computational systems in such a way as to demonstrate understanding of the equilibrium points involved in the chosen option. (Assessment)

9. Competences (IEEE)

C1. An intellectual understanding and the ability to apply mathematical foundations and computer science theory. \Rightarrow Outcome a

C20. Ability to connect theory and skills learned in academia to real-world occurrences explaining their relevance and utility. \Rightarrow Outcome j

10. List of topics

1. Multi-Variable Function Differential
2. Multi-Variable function Integral
3. Series
4. Ordinary Differential Equations

11. Methodology and Evaluation Methodology:

Theory Sessions:

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

Lab Sessions:

In order to verify their competences, several activities including active learning and roleplay will be developed during lab sessions.

Oral Presentations:

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

Reading:

Throughout the course different readings are provided, which are evaluated. The average of the notes in the readings is considered as the mark of a qualified practice. The use of the UTEC Online virtual campus allows each student to access the course information, and interact outside the classroom with the teacher and with the other students.
Evaluation System:

12. Content

Unit 1: Multi-Variable Function Differential (24)
Competences Expected: C1,C20

Competences Expected: C1,C20

Learning Outcomes

- Understand the concept of multi-variable functions.
- Master the concept and calculation method of the direction derivative and gradient of the guide.
- Master the calculation method of the first order and second order partial derivative of composite functions.
- Master the calculation method of the partial derivatives for implicit functions.
- Understand tangent line, normal plane to curve line and tangent plane, normal line to a curve plan. Know to calculate their equations.
- Learn the concept of extreme value and conditional extreme value of multi-variable functions; know to find out the binary function extreme value.
- Be able to solve simple applications problems.

Topics

- Concept of multi-variable functions.
- Directional Derivates
- Tangent line, normal plane to curve line and tangent plane, normal line to a curve plan. Know to calculate their equations.
- Concept of extreme value and conditional extreme value of multi-variable functions
- Applications problems such as modeling total production of an economic system, speed of sound through the ocean, thickener optimization, etc.
eadings : [Ste12], [Zil13]

Unit 2: Multi-Variable function Integral (12)
Competences Expected: C1,C20

Learning Outcomes	Topics

- Understand the double integral, triple integral, and understand the nature of the multiple integral.
- Master the calculation method of double integral (Cartesian coordinates, polar coordinates) the triple integral (Cartesian coordinates, cylindrical coordinates, spherical coordinates).
- Understand the concept of line Integral, their properties and relationships.
- Know to calculate the line integral.
- Master the calculation the rotational, divergence and Laplacian.
- Double integral, triple integral and nature of the multiple integral.
- Method of double integral
- Line Integral
- The Divergence, Rotation and Laplacian

Readings : [Ste12], [Zil13]

Unit 3: Series (24)			
Competences Expected: C1,C20	Topics		
Learning Outcomes			
	• Convergent series		
• Master to calculation if series is convergent, and if			
convergent, find the sum of the series trying to find			
the radius of convergence and the interval of conver-			
gence of a power series.		\quad • Taylor and McLaurin series	- Represent a function as a power series and find the
:---			
Taylor and McLaurin Series to estimate function val-			
ues to a desired accuracy.			
• Understand the concepts of orthogonal functions and			
the expansion of a given function f to find its Fourier			
series.			

Unit 4: Ordinary Differential Equations (30)
Competences Expected: C1,C20

Topics

- Understand differential equations, solutions, order, general solution, initial conditions and special solutions etc.
- Master the calculation method for variables separable equation and first order linear equations. Known to solve homogeneous equation and Bernoulli (Bernoulli) equations; understand variable substitution to solve the equation.
- Master to solve total differential equations.
- Be able to use reduced order method to solve equations.
- Understand the structure of the second order linear differential equation
- Master calculation method for the constant coefficient homogeneous linear differential equations; and understand calculation method for the higher order homogeneous linear differential equations.
- Know to apply the differential equation calculation method to solve simple geometric and physic application problems.
- Solve properly certain types of differential equations using Laplace transforms.
- Concept of differential equations
- Methods to resolve differential equations
- Methods to resolve the secod order linear differential equations
- Higher order linear ordinary differential equations
- Applications problems using Laplace transforms

Readings : [Ste12], [Zil13]

